8086 instructions

Emu8086 Home Page | Help Index | Overview of Emu8086
Emulator | Assembly Language Tutorials:01234567891011 12
| Emu8086 reference | Download Emu8086 | COMPLETE 8086
INSTRUCTION SET | INTERRUPT LIST | Contact

Complete 8086 instruction set

Quick reference:

CMPSB MOV

AAA CMPSW JAE JNBE JPO MOVSB RCR SCASB
AAD CWD JB JNC JS MOVSW REP SCASW
AAM DAA JBE JNE JZ MUL REPE SHL
AAS DAS JC JNG LAHF NEG REPNE SHR
ADC DEC JCXZ JINGE LDS NOP REPNZ STC
ADD DIV JE JNL LEA NOT REPZ STD
AND HLT JG JNLE LES OR RET STI
CALL IDIV JGE JNO LODSB OUT RETF STOSB
CcBwW IMUL JL JNP LODSW POP ROL STOSW
CLC IN JLE JNS LOOP POPA ROR SuUB
CLD INC JMP JNZ LOOPE POPF SAHF TEST
CLI INT JNA JO LOOPNE PUSH SAL XCHG

CMC INTO JNAE JP LOOPNZ PUSHA SAR XLATB
CMP IRET JNB JPE LOOPZ PUSHF SBB XOR
JA RCL

Operand types:
REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.
SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX], [BX+SI+7], variable, etc...(see Memory Access).

immediate: 5, -24, 3Fh, 10001101b, etc...

Notes:

. When two operands are required for an instruction they are
separated by comma. For example:

REG, memory

. When there are two operands, both operands must have the same
size (except shift and rotate instructions). For example:

AL, DL
DX, AX

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (1 of 60)5/20/2005 6:22:23 PM

http://www.emu8086.com/
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/index.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/tutorials.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/numbering_systems_tutorial.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_01.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_02.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_03.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_04.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_05.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_06.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_07.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_08.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_09.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_10.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_11.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_12.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/reference.html
http://www.emu8086.com/download.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/supported_interrupts.html
mailto:help@emu8086.com
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_02.html

8086 instructions

ml1 DB ?
AL, ml
m2 DW ?
AX, m2

. Some instructions allow several operand combinations. For example:

memory, immediate
REG, immediate

memory, REG
REG, SREG

. Some examples contain macros, so it is advisable to use Shift + F8
hot key to Step Over (to make macro code execute at maximum
speed set step delay to zero), otherwise emulator will step through
each instruction of a macro. Here is an example that uses PRINTN
macro:

#make COM#

include 'emu8086.inc'

ORG 100h

MOV AL, 1

MOV BL, 2

PRINTN 'Hello World!" ; macro.
MOV CL, 3

PRINTN 'Welcome! : macro.
RET

These marks are used to show the state of the flags:

1 - instruction setsthisflag to 1.

0 - instruction sets thisflag to 0.

r - flag value depends on result of the instruction.
? - flag valueis undefined (maybe 1 or 0).

Some instructions gener ate exactly the same machine code, so disassembler may have a
problem decoding to your original code. Thisisespecially important for Conditional
Jump instructions (see" Program Flow Control” in Tutorialsfor more information).

Instructionsin aphabetical order:

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (2 of 60)5/20/2005 6:22:23 PM

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_07.html

8086 instructions

Instruction

Operands

Description

AAA

No operands

ASCII Adjust after Addition.
Corrects result in AH and AL after addition
when working with BCD values.

It works according to the following
Algorithm:

if low nibble of AL > 9 or AF = 1 then:

. AL=AL+6

. AH=AH+1

. AF=1
CF=1

else

CF=0

in both cases:
clear the high nibble of AL.

Example:

MOV AX,15 ; AH =00, AL =0Fh
AAA yAH=01, AL =05
RET

clzlsiofpia
rlPlPPr

AAD

No operands

ASCII Adjust before Division.

Prepares two BCD values for division.
Algorithm:
. AL=(AH* 10) + AL
. AH=0
Example:
MOV AX, 0105h ; AH=01,AL=05

AAD ; AH =00, AL = OFh (15)
RET

czlsfola]

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (3 of 60)5/20/2005 6:22:23 PM

8086 instructions

PR

AAM

No operands

ASCII Adjust after Multiplication.

Corrects the result of multiplication of two
BCD values.

Algorithm:
. AH=AL/10
AL = remainder
Example:
MOV AL, 15 ; AL =0Fh

AAM ;AH=01, AL =05
RET

clzlsiolpia
Pl Irf?

AAS

No operands

ASCII Adjust after Subtraction.
Corrects result in AH and AL after
subtraction when working with BCD values.

Algorithm:

if low nibble of AL >9 or AF =1 then:

. AL=AL-6
. AH=AH-1
. AF=1
. CF=1

ese

. AF=0
CF=0

in both cases:
clear the high nibble of AL.

Example:

MOV AX, 02FFh ; AH =02, AL = OFFh
AAS yAH=01, AL =09
RET

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (4 of 60)5/20/2005 6:22:23 PM

8086 instructions

ciz|slolr|a
rlPliR

Add with Carry.

Algorithm:

operandl = operandl + operand2 + CF

Example:
REG, memory
memory, REG STC st CF=1
ADC REG, REG e | MOVAL5 AL=5
e e | ADCAL,1;AL=7
, immediate RET
clzls[olpia
r el fr e e
Add.
Algorithm:
operandl = operandl + operand2
REG, memory Example:
memory, REG
ADD REG, REG MOV AL,5 ;AL=5
memory, immediate | ADDAL,-3 ;AL =2
REG, immediate RET

clzlsiofpia
r e e e frie

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (5 of 60)5/20/2005 6:22:23 PM

8086 instructions

Logical AND between all bits of two
operands. Result is stored in operandl.

These rules apply:

1AND1=1
1ANDO=0
0OAND1=0
0OANDO=0

REG, memory

memory, REG

AND REG, REG Example:

memory, immediate

REG, immediate MOV AL, 'd ; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b (‘A"
RET
Transfers control to procedure, return
address is (IP) is pushed to stack. 4-byte
address may be entered in this form:
1234h:5678h, first value is a segment second
value is an offset (this is a far call, so CS is
also pushed to stack).
Example:
#make COM#
ORG 100h ; for COM file.

procedure name CALL p1

CALL label

4-byte address ADD AX, 1

RET ; return to OS.

pl PROC ; procedure declaration.
MOV AX, 1234h
RET ;returnto cdler.

pl ENDP

clzslofpia

unchanged

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (6 of 60)5/20/2005 6:22:23 PM

8086 instructions

CBW

No operands

Convert byte into word.
Algorithm:
if high bit of AL =1 then:

AH = 255 (OFFh)

else

Example:

MOV AX,0 ;AH=0,AL=0
MOV AL, -5 ; AX = 000FBh (251)
CBW ;AX = OFFFBh (-5)
RET

clzls[olpa
[anchanged |

CLC

No operands

Clear Carry flag.
Algorithm:
CF=0

c
5

CLD

No operands

Clear Direction flag. SI and DI will be

incremented by chain instructions: CMPSB,
CMPSW, LODSB, LODSW, MOVSB, MOVSW,
STOSB, STOSW.

Algorithm:
DF=0

5
o

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (7 of 60)5/20/2005 6:22:23 PM

8086 instructions

CLI

No operands

Clear Interrupt enable flag. This disables
hardware interrupts.

Algorithm:
IF=0

0
5

CMC

No operands

Complement Carry flag. Inverts value of CF.
Algorithm:

if CF=1thenCF=0
if CF=0thenCF=1

c
r

CMP

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Compare.
Algorithm:
operandl - operand2

result is not stored anywhere, flags are set (OF, SF, ZF,
AF, PF, CF) according to result.

Example:

MOV AL, 5

MOV BL, 5

CMPAL,BL ;AL =5, ZF = 1 (so equal!)
RET

clzlsiofpia
r e Jr e frie

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (8 of 60)5/20/2005 6:22:23 PM

8086 instructions

CMPSB

No operands

Compare bytes: ES:[DI] from DS:[SI].

Algorithm:

. DSJ[9] - ES:[DI]
. set flags according to result:
OF, SF, ZF, AF, PF, CF

if DF =0then
o SI=S+1
o DI=DI+1
else
o SI=S-1
o DI=DI-1
Example:

see cmpsb.asm in Samples.

clzlsiolpia
r e e Irie

CMPSW

No operands

Compare words: ES:[DI] from DS:[SI].

Algorithm:

. DS[9]-ESI[DI]
. set flags according to result:
OF, SF, ZF, AF, PF, CF

. if DF=0then
o SI=S+2
o DI=DI+2
ese
o SI=8-2
v DI=DI-2
Example:

see cmpsw.asm in Samples.

clzlsiofpia
r e e e Ire

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (9 of 60)5/20/2005 6:22:23 PM

http://www.emu8086.com/vb/asm_samples/cmpsb.txt
http://www.emu8086.com/vb/asm_samples/cmpsw.txt

8086 instructions

CWD

No operands

Convert Word to Double word.
Algorithm:

if high bit of AX =1 then:

. DX = 65535 (OFFFFh)

ese

. DX=0

Example:

MOV DX,0 ;DX =0

MOV AX,0 ;AX=0

MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD ; DX AX = OFFFFh:OFFFBh
RET

clz|s[ofp|a

DAA

No operands

Decimal adjust After Addition.
Corrects the result of addition of two
packed BCD values.

Algorithm:

if low nibble of AL >9 or AF =1 then:

AL=AL +6
. AF=1

if AL > 9Fh or CF =1 then:

AL = AL + 60h
. CF=1

Example:
MOV AL, OFh ; AL = 0Fh (15)

DAA ; AL =15h
RET

clzlsolpia
r e e Irie

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (10 of 60)5/20/2005 6:22:24 PM

8086 instructions

DAS

No operands

Decimal adjust After Subtraction.

Corrects the result of subtraction of two
packed BCD values.

Algorithm:

if low nibble of AL >9 or AF = 1 then:

AL=AL-6
. AF=1

if AL > 9Fh or CF = 1 then:

. AL=AL-60h
CF=1

Example:
MOV AL, OFFh ; AL = OFFh (-1)

DAS ;AL =990, CF=1
RET

g
-

=10l
NI
o]
~ 10l

-

U
1>

DEC

REG
memory

Decrement.
Algorithm:

operand = operand - 1

Example:

MOV AL, 255 ; AL = OFFh (255 or -1)
DECAL ;AL =OFEh (254 or -2)
RET

Z[[of
el

CF - unchanged!

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (11 of 60)5/20/2005 6:22:24 PM

8086 instructions

DIV

REG
memory

Unsigned divide.

Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)

Example:

MOV AX, 203 ; AX = 00CBh
MOV BL, 4

DIVBL ;AL =50(32h), AH=3
RET

HLT

No operands

Halt the System.

Example:

MOV AX, 5
HLT

clzlsiofpia

unchanged

IDIV

REG
memory

Signed divide.

Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)

Example:

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (12 of 60)5/20/2005 6:22:24 PM

8086 instructions

MOV AX, -203 ; AX = OFF35h

MOV BL, 4

IDIVBL ;AL =-50 (OCEh), AH = -3 (OFDh)
RET

cizlslolr|a
PRRPPRR

Signed multiply.

Algorithm:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

Example:
IMUL REG
memory
MOV AL, -2
MOV BL, -4
IMULBL ;AX=8
RET
clzls[olpia
PRl l2l
CF=0F=0 when result fitsinto operand of IMUL.
Input from port into AL or AX.
Second operand is a port number. If
required to access port number over 255 -
DX register should be used.
Example:
AL, im.byte o
AL, DX IN AX, 4 ; get status of traffic lights.
IN AX, im.byte IN' AL, 7 ; get status of stepper-motor.
AX, DX

clzlsiofpia

|unchanged

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (13 of 60)5/20/2005 6:22:24 PM

8086 instructions

INC

REG
memory

Increment.
Algorithm:
operand = operand + 1

Example:

MOV AL, 4
INC AL AL =5
RET

zls[ofp|a
r e Jr Il

CF - unchanged!

INT

immediate byte

Interrupt numbered by immediate byte
(0..255).

Algorithm:

Push to stack:
o flagsregister
o CS
o IP
IF=0
. Transfer control to interrupt procedure

Example:

MOV AH, OEh ; teletype.
MQV AL, 'A’

INT 10h ; BIOSinterrupt.
RET

clzlslolpialr

|unchanged |6

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (14 of 60)5/20/2005 6:22:24 PM

8086 instructions

INTO

No operands

Interrupt 4 if Overflow flag is 1.
Algorithm:
if OF =1then INT 4

Example:

;-5-127=-132 (not in -128..127)
; the result of SUB iswrong (124),
S0 OF =1isset:

MOV AL, -5

SUB AL, 127 ; AL =7Ch (124)
INTO ; process error.

RET

IRET

No operands

Interrupt Return.

Algorithm:

Pop from stack:
o IP
o CS
o flagsregister

clzlslolpia
" popped

label

Short Jump if first operand is Above second
operand (as set by CMP instruction).
Unsigned.

Algorithm:
if (CF=0) and (ZF = 0) then jump
Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, 250
CMPAL,5
JA labell
PRINT 'AL isnot above 5'
IJMP exit

label 1:
PRINT 'AL isabove 5'

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (15 of 60)5/20/2005 6:22:24 PM

8086 instructions

exit:
RET

clz]s[ofr|a

JAE

label

Short Jump if first operand is Above or
Equal to second operand (as set by CMP
instruction). Unsigned.

Algorithm:
if CF=0thenjump
Example:

include 'emu8086.inc'

#make COM#

ORG 100h

MOV AL, 5

CMPAL, 5

JAE labell

PRINT 'AL is not above or equal to 5'

JMP exit
label1:

PRINT 'AL isabove or equal to 5'
exit:

RET

clzslofpia

|unchanged

JB

label

Short Jump if first operand is Below second
operand (as set by CMP instruction).
Unsigned.

Algorithm:
if CF =1thenjump
Example:

include 'emu8086.inc'
#make COM#

ORG 100h

MOV AL, 1
CMPAL,5

JB labdl

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (16 of 60)5/20/2005 6:22:24 PM

8086 instructions

PRINT ‘AL isnot below 5'
IJMP exit
label 1:
PRINT 'AL isbelow 5'
exit:
RET

clz|s[ofp|a

JBE

label

Short Jump if first operand is Below or
Equal to second operand (as set by CMP
instruction). Unsigned.

Algorithm:
if CF=1or ZF = 1 then jump
Example:

include 'emu8086.inc'

#make COM#

ORG 100h

MOV AL, 5

CMPAL, 5

JBE labell

PRINT 'AL isnot below or equal to 5'

IMP exit
label 1

PRINT 'AL isbelow or equal to &'
exit:

RET

ciz|slolr|a

unchanged

Short Jump if Carry flag is set to 1.

Algorithm:
if CF=1thenjump
Example:

include 'emu8086.inc'
#make COM#

ORG 100h

MOV AL, 255

ADD AL, 1

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (17 of 60)5/20/2005 6:22:24 PM

8086 instructions

label

JC labell
PRINT 'no carry.'
JMP exit
label 1:
PRINT 'has carry.'
exit:
RET

clzlsiofpia

|unchanged

JCXZ

label

Short Jump if CX register is 0.

Algorithm:
if CX = 0thenjump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MQV CX, 0
JCXZ labell
PRINT 'CX isnot zero.'
IMP exit
label 1:
PRINT 'CX is zero.'
exit:
RET

clz|slolr|a

unchanged

Short Jump if first operand is Equal to
second operand (as set by CMP instruction).
Signed/Unsigned.

Algorithm:
if ZF =1 then jump
Example:

include 'emu8086.inc'
#make COM#

ORG 100h

MOQV AL, 5

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (18 of 60)5/20/2005 6:22:24 PM

8086 instructions

JE

label

CMPAL,5

JE labell

PRINT 'AL isnot equal to 5.’

JMP exit
label 1:

PRINT 'AL isequal to 5.
exit:

RET

clz|s[ofp|a

label

Short Jump if first operand is Greater then
second operand (as set by CMP instruction).
Signed.

Algorithm:
if (ZF = 0) and (SF = OF) then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 5
CMPAL, -5
JG labell
PRINT 'AL isnot greater -5.'
IJMP exit
label1:
PRINT 'AL isgreater -5.'
exit:
RET

clz]s[ofrla

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (19 of 60)5/20/2005 6:22:24 PM

8086 instructions

JGE

label

Short Jump if first operand is Greater or
Equal to second operand (as set by CMP
instruction). Signed.

Algorithm:
if SF = OF then jump
Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, 2
CMPAL, -5
JGE labell
PRINT 'AL < -5'
IMP exit
label 1:
PRINT 'AL >=-5'
exit:
RET

clz]s[ofr|a

JL

label

Short Jump if first operand is Less then
second operand (as set by CMP instruction).
Signed.

Algorithm:
if SF <> OF then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, -2
CMPAL,5
JL labell
PRINT ‘AL >=5.'
JMP exit
label 1:
PRINT 'AL <5
exit:
RET

clz[slolpla

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (20 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged |

JLE

label

Short Jump if first operand is Less or Equal
to second operand (as set by CMP
instruction). Signed.

Algorithm:
if SF <> OF or ZF =1 then jump

Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, -2
CMPAL,5
JLE labell
PRINT ‘AL >5.
IJMP exit
label 1:
PRINT 'AL <=5
exit:
RET

clz]s[ofr|a

JMP

label
4-byte address

Unconditional Jump. Transfers control to
another part of the program. 4-byte
address may be entered in this form:
1234h:5678h, first value is a segment second
value is an offset.

Algorithm:
awaysjump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 5
JMPlabell ;jump over 2 lines!
PRINT 'Not Jumped!'
MOV AL, 0
label1:

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (21 of 60)5/20/2005 6:22:24 PM

8086 instructions

PRINT 'Got Here!'
RET

clz]s[ofr|a

INA

label

Short Jump if first operand is Not Above
second operand (as set by CMP instruction).
Unsigned.

Algorithm:
if CF=1or ZF = 1 then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 2
CMPAL,5
INA label1
PRINT 'AL isabove5.'
JMP exit
label 1:
PRINT 'AL isnot above 5.'
exit:
RET

clz|s|olrla

JNAE

label

Short Jump if first operand is Not Above
and Not Equal to second operand (as set by
CMP instruction). Unsigned.

Algorithm:
if CF=1thenjump
Example:

include 'emu8086.inc'
#make COM#

ORG 100h

MQV AL, 2
CMPAL, 5

INAE labell

PRINT 'AL >=5.'

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (22 of 60)5/20/2005 6:22:24 PM

8086 instructions

IMP exit
label 1:

PRINT 'AL <5!"
exit:

RET

clz|s[olrla

JNB

label

Short Jump if first operand is Not Below
second operand (as set by CMP instruction).
Unsigned.

Algorithm:
if CF =0 thenjump
Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, 7
CMPAL, 5
INB label1
PRINT ‘AL <5
IMP exit
label1:
PRINT 'AL >=5.'
exit:
RET

clz|s[ofp|a

Short Jump if first operand is Not Below
and Not Equal to second operand (as set by
CMP instruction). Unsigned.

Algorithm:
if (CF=0) and (ZF = 0) then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (23 of 60)5/20/2005 6:22:24 PM

8086 instructions

JNBE

label

MOV AL, 7
CMPAL,5
INBE labell
PRINT 'AL <=5
IMP exit
label 1:
PRINT 'AL >5!"
exit:
RET

clz|s[olrla

INC

label

Short Jump if Carry flag is set to O.

Algorithm:
if CF=0thenjump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 2
ADD AL, 3
JINC labell
PRINT 'has carry.'
JMP exit
label1:
PRINT 'no carry.'
exit:
RET

clzslofpia

|unchanged

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (24 of 60)5/20/2005 6:22:24 PM

8086 instructions

INE

label

Short Jump if first operand is Not Equal to
second operand (as set by CMP instruction).
Signed/Unsigned.

Algorithm:
if ZF =0 then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 2
CMPAL, 3
INE labell
PRINT ‘AL =3
IMP exit
label 1:
PRINT 'Al <> 3!
exit:
RET

clzls[opa

NG

label

Short Jump if first operand is Not Greater
then second operand (as set by CMP
instruction). Signed.

Algorithm:
if (ZF = 1) and (SF <> OF) then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MQV AL, 2
CMPAL, 3
ING labell
PRINT 'AL > 3!
IMP exit
label 1:
PRINT ‘Al <=3.'
exit:
RET

clzslofpia

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (25 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged

INGE

label

Short Jump if first operand is Not Greater
and Not Equal to second operand (as set by
CMP instruction). Signed.

Algorithm:
if SF <> OF then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 2
CMPAL, 3
INGE labell
PRINT 'AL >= 3.
IJMP exit
label1:
PRINT 'Al < 3!
exit:
RET

clz|s[olrla

JNL

label

Short Jump if first operand is Not Less then
second operand (as set by CMP instruction).
Signed.

Algorithm:
if SF = OF then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 2
CMPAL, -3
JINL labell
PRINT 'AL <-3!
JMP exit
label 1:
PRINT 'Al >=-3.'
exit:

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (26 of 60)5/20/2005 6:22:24 PM

8086 instructions

RET

clz|slolrla
[nchengea |

INLE

label

Short Jump if first operand is Not Less and
Not Equal to second operand (as set by
CMP instruction). Signed.

Algorithm:
if (SF =OF) and (ZF = 0) then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 2
CMPAL, -3
INLE label1l
PRINT 'AL <=-3.
IJMP exit
label1:
PRINT 'Al > -3
exit:
RET

clzls[olpa
[anchanged |

JNO

label

Short Jump if Not Overflow.

Algorithm:
if OF =0 then jump
Example:

;-5-2=-7(inside-128..127)
: the result of SUB is correct,
; S0 OF = 0:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, -5
SUB AL, 2 ; AL =0F%h (-7)
INO labell

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (27 of 60)5/20/2005 6:22:24 PM

8086 instructions

PRINT ‘overflow!'
IJMP exit
label 1:

PRINT 'no overflow.'
exit:

RET

clzlslofpla

JNP

label

Short Jump if No Parity (odd). Only 8 low
bits of result are checked. Set by CMP,
SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:
if PF =0 thenjump
Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, 00000111b ;AL=7
OR AL,O ; just set flags.
INP label 1
PRINT 'parity even.'
IMP exit
label1:
PRINT 'parity odd.'
exit:
RET

clz|s[ofp|a

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (28 of 60)5/20/2005 6:22:24 PM

8086 instructions

INS

label

Short Jump if Not Signed (if positive). Set
by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:
if SF=0thenjump
Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, 00000111b ;AL=7
OR AL,O ; just set flags.
INSlabell
PRINT 'signed.’
IMP exit
label1:
PRINT 'not signed.'
exit:
RET

clz|s[ofpla

INZ

label

Short Jump if Not Zero (nhot equal). Set by
CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:
if ZF =0 then jump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 00000111b ;AL=7
OR AL,O0 ; just set flags.
INZ labell
PRINT ‘'zero.'
JMP exit
label 1.
PRINT 'not zero.'
exit:
RET

clzlsiofpla

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (29 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged |

label

Short Jump if Overflow.

Algorithm:
if OF =1 then jump
Example:

;-5-127=-132 (not in -128..127)
; theresult of SUB iswrong (124),
; SOOF = lisset:

include 'emu8086.inc'
#make COM#
org 100h

MQV AL, -5

SUB AL, 127 ; AL =7Ch (124)
JO labell

PRINT 'no overflow.'
JMP exit
label 1:

PRINT ‘overflow!
exit:

RET

clz|s[olrla

JP

label

Short Jump if Parity (even). Only 8 low bits
of result are checked. Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.

Algorithm:
if PF=1thenjump
Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, 00000101b ;AL =5
OR AL,O ; just set flags.
JP labell
PRINT 'parity odd.'
IMP exit
label1:

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (30 of 60)5/20/2005 6:22:24 PM

8086 instructions

PRINT 'parity even.'
exit:
RET

clz|slolrla

JPE

label

Short Jump if Parity Even. Only 8 low bits
of result are checked. Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.

Algorithm:
if PF =1 thenjump
Example:

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AL, 00000101b ;AL =5
OR AL,O ; just set flags.
JPE label1
PRINT 'parity odd.'
JMP exit
label 1:
PRINT 'parity even.'
exit:
RET

clzsiofpia

unchanged

JPO

label

Short Jump if Parity Odd. Only 8 low bits of
result are checked. Set by CMP, SUB, ADD,
TEST, AND, OR, XOR instructions.

Algorithm:
if PF =0 thenjump
Example:

include 'emu8086.inc'

#make COM#

ORG 100h

MOV AL, 00000111b ;AL=7
OR AL,O ; just set flags.
JPO label 1

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (31 of 60)5/20/2005 6:22:24 PM

8086 instructions

PRINT 'parity even.'
JMP exit
label 1:
PRINT 'parity odd.'
exit:
RET

clz|slolrla

JS label

Short Jump if Signed (if negative). Set by
CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:
if SF=1thenjump
Example:

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AL, 10000000b ; AL =-128
OR AL,O ; just set flags.
JSlabell
PRINT 'not signed.'
IMP exit
label 1:
PRINT 'signed.’
exit:
RET

clz]s[ofr|a

Short Jump if Zero (equal). Set by CMP,
SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:
if ZF =1 then jump
Example:

include 'emu8086.inc'
#make COM#

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (32 of 60)5/20/2005 6:22:24 PM

8086 instructions

JZ

label

ORG 100h

MOV AL, 5

CMPAL,5

JZ labell

PRINT 'AL isnot equal to 5.’

JMP exit
label 1:

PRINT 'AL isequal to 5.'
exit:

RET

clz|slolr|a

unchanged

LAHF

No operands

Load AH from 8 low bits of Flags register.

Algorithm:
AH = flagsregister

AHbit: 7 6 5 43 21 0
[SF] [ZF] [O] [AF] [O] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

clzslofpia

|unchanged

LDS

REG, memory

Load memory double word into word
register and DS.

Algorithm:

REG = first word
. DS = second word

Example:

#make COM#
ORG 100h

LDSAX, m
RET

m DW 1234h
DW 5678h

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (33 of 60)5/20/2005 6:22:24 PM

8086 instructions

END

AX is set to 1234h, DS is set to 5678h.

clz]s[olrla

LEA

REG, memory

Load Effective Address.

Algorithm:

. REG = address of memory (offset)

Generally this instruction is replaced by
MOV when assembling when possible.

Example:

#make COM#
ORG 100h

LEA AX, m
RET
m DW 1234h

END

AX is set to: 0104h.

LEA instruction takes 3 bytes, RET takes 1
byte, we start at 100h, so the address of
'm' is 104h.

ciz|slolr|a

unchanged

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (34 of 60)5/20/2005 6:22:24 PM

8086 instructions

LES

REG, memory

Load memory double word into word
register and ES.

Algorithm:

. REG =first word
ES = second word

Example:

#make COM#
ORG 100h

LESAX, m
RET

m DW 1234h
DW 5678h

END

AX is set to 1234h, ES is set to 5678h.

clz|s[ofp|a

LODSB

No operands

Load byte at DS:[SI] into AL. Update SI.

Algorithm:

AL =DSJ[9l]
. if DF=0then
o SI=S+1
else
0 SI=S-1

Example:

#make COM#
ORG 100h

LEA S, al
MOV CX, 5
MOV AH, OEh

m: LODSB
INT 10h
LOOPmM

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (35 of 60)5/20/2005 6:22:24 PM

8086 instructions

RET

al DB IH‘, Iel’ lIl, III, lol

clz|s[ofp|a

LODSW

No operands

Load word at DS:[SI] into AX. Update SI.

Algorithm:

. AX =DS][9]
if DF = 0 then
o SI=S1+2
else
o SI=S-2

Example:

#make COM#
ORG 100h

LEA S, al
MQV CX, 5

REP LODSW ; finally there will be 555hin AX.
RET
al dw 111h, 222h, 333h, 444h, 555h

ciz|slolr|a

unchanged

LOOP

label

Decrease CX, jump to label if CX not zero.

Algorithm:

CX=CX-1
. if CX <>0then
o jump
else
o Nojump, continue

Example:

include 'emu8086.inc'

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (36 of 60)5/20/2005 6:22:24 PM

8086 instructions

#make COM#
ORG 100h
MQV CX, 5

label1:

PRINTN 'loop!*
LOOP label 1
RET

clzslofpia

|unchanged

LOOPE

label

Decrease CX, jump to label if CX not zero
and Equal (ZF = 1).

Algorithm:

CX=CX-1
. If (CX <>0)and (ZF = 1) then
o jump
else
o Nojump, continue

Example:

; Loop until result fitsinto AL alone,

; or 5times. The result will be over 255
; on third loop (100+100+100),

; so loop will exit.

include 'emu8086.inc'
#imake COM#
ORG 100h
MOV AX, 0
MQV CX, 5
label1:
PUTC "'
ADD AX, 100
CMPAH, 0
LOOPE label1
RET

clzsiofpia

unchanged

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (37 of 60)5/20/2005 6:22:24 PM

8086 instructions

LOOPNE

label

Decrease CX, jump to label if CX not zero
and Not Equal (ZF = 0).

Algorithm:

CX=CX-1
. if (CX <>0) and (ZF = 0) then
o jump
ese
o nojump, continue

Example:

; Loop until 7" isfound,
; or 5times.

include 'emu8086.inc'
#make COM#
ORG 100h
MOV S, 0
MQV CX, 5

label 1:
PUTC "'
MOV AL, v1[Sl]
INC Sl ; next byte (SI=SI+1).
CMPAL, 7
LOOPNE label1
RET
vlidb9, 8,765

clzslofpia

unchanged

LOOPNZ

label

Decrease CX, jump to label if CX not zero
and ZF = 0.

Algorithm:

CX=CX-1
. if (CX <>0) and (ZF = 0) then
o jump
else
o nojump, continue

Example:

; Loop until 7" is found,
; or 5times.

include 'emu8086.inc'
#make COM#

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (38 of 60)5/20/2005 6:22:24 PM

8086 instructions

ORG 100h

MOV Sl, 0

MOV CX, 5
label 1:

PUTC "'

MOV AL, v1[Sl]

INC S ; next byte (SI=SI+1).

CMPAL, 7

LOOPNZ label1

RET

vidb9,8,7,6,5

clz|s[olrla

LOOPZ

label

Decrease CX, jump to label if CX not zero
and ZF = 1.

Algorithm:

CX=CX-1
. if (CX <>0)and (ZF =1) then
o jump
else
o Nojump, continue

Example:

; Loop until result fitsinto AL alone,

; or 5 times. The result will be over 255
; on third loop (100+100+100),

; so loop will exit.

include 'emu8086.inc'
#make COM#
ORG 100h
MOV AX, 0
MQV CX, 5
label 1:
PUTC "'
ADD AX, 100
CMPAH, 0
LOOPZ label1
RET

clzlsiolpia

|unchanged

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (39 of 60)5/20/2005 6:22:24 PM

8086 instructions

MOV

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

SREG, memory
memory, SREG
REG, SREG
SREG, REG

Copy operand2 to operandl.

The MOV instruction cannot:

set the value of the CS and IP
registers.
copy value of one segment register
to another segment register (should
copy to general register first).

. copy immediate value to segment
register (should copy to general
register first).

Algorithm:

operandl = operand2

Example:

#make COM#

ORG 100h

MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX ; copy value of AX to DS.

MOV CL,'A" ; CL =41h (ASCII code).

MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh ; BX = position on screen.
MOV [BX],CX ; w.[0B800h:015Eh] = CX.
RET ; returns to operating system.

clz]s[ofrla

MOV SB

No operands

Copy byte at DS:[SI] to ES:[DI]. Update SI
and DI.

Algorithm:

. ES[DI] =DS][SI]

if DF =0then
o SI=S+1
o DI=DI+1
else
o S=8-1
o DI=DI-1
Example:
#make_COM#
ORG 100h

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (40 of 60)5/20/2005 6:22:24 PM

8086 instructions

LEA S, al
LEA DI, a2
MOV CX, 5
REP MOV SB

RET

alDB 1,2,34,5
a2 DB 5 DUP(0)

clz|s[olrla

MOV SW

No operands

Copy word at DS:[SI] to ES:[DI]. Update
Sl and DI.

Algorithm:

. ES[DI] =DS][SI]

if DF = 0 then
o SI=S+2
o DI=DI+2
else
o SI=8-2
o DI=DI-2
Example:
#make COM#
ORG 100h
LEA S, al
LEA DI, a2
MOV CX, 5
REP MOV SW
RET
al DW 1,2,34,5
a2 DW 5 DUP(0)

clz|s[ofpla

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (41 of 60)5/20/2005 6:22:24 PM

8086 instructions

Unsigned multiply.

Algorithm:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

Example:
MUL REG
memory
MOV AL, 200 ; AL =0C8h
MOV BL, 4
MUL BL ; AX =0320h (800)
RET
clzls[olpia
PPl 2l
CF=0F=0 when high section of theresult is zero.
Negate. Makes operand negative (two's
complement).
Algorithm:
. Invert all bits of the operand
Add 1 to inverted operand
Example:
REG
NEG memory MOV AL,5 ; AL =05h

NEGAL ;AL =OFBh(-5)
NEGAL ;AL =05h(5)
RET

ciz|slolr|a
r e e e

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (42 of 60)5/20/2005 6:22:24 PM

8086 instructions

NOP

No operands

No Operation.

Algorithm:
. Do nothing
Example:

; do nothing, 3 times:
NOP
NOP
NOP
RET

clzls[opa

NOT

REG
memory

Invert each bit of the operand.

Algorithm:

if bitislturnittoO.
. ifbitisOturnitto 1.

Example:

MOV AL, 00011011b
NOT AL ; AL =11100100b
RET

clz|s|olr|a

OR

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical OR between all bits of two
operands. Result is stored in first operand.

These rules apply:

10R1=1
10R0=1
0OOR1=1
0OORO0=0

Example:

MOV AL,'A" ; AL =01000001b

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (43 of 60)5/20/2005 6:22:24 PM

8086 instructions

OR AL, 00100000b ; AL =01100001b (‘&)
RET

cizlslolr|a
ol rjolrz

im.byte, AL
im.byte, AX
DX, AL
DX, AX

ouT

Output from AL or AX to port.

First operand is a port number. If required
to access port number over 255 - DX
register should be used.

Example:

MOV AX, OFFFh ; Turn on al
OUT 4, AX ; trafficlights.

MOV AL, 100b ; Turn on the third
OUT 7, AL ; magnet of the stepper-motor.

ciz|slolr|a

unchanged

REG
POP SREG
memory

Get 16 bit value from the stack.

Algorithm:

operand = SS:[SP] (top of the stack)
. SP=SP+2

Example:

MOV AX, 1234h

PUSH AX

POP DX ;DX =1234h
RET

clzls[olpia
|unchanged

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (44 of 60)5/20/2005 6:22:24 PM

8086 instructions

POPA

No operands

Pop all general purpose registers DI, SI, BP,
SP, BX, DX, CX, AX from the stack.

SP value is ignored, it is Popped but not set
to SP register).

Note: this instruction works only on 80186
CPU and later!

Algorithm:

. POPDI
. POPS
. POPBP
. POP xx (SP valueignored)
. POPBX
. POPDX
. POPCX
POP AX

clz|s[olrla

POPF

No operands

Get flags register from the stack.

Algorithm:

. flags= SS:[SP] (top of the stack)
SP=SP+2

clzslolpia

popped

PUSH

REG
SREG
memory
immediate

Store 16 bit value in the stack.

Note: PUSH immediate works only on
80186 CPU and later!

Algorithm:
. SP=SP-2
SS.[SP] (top of the stack) = operand

Example:

MOV AX, 1234h
PUSH AX
POP DX ;DX =1234h

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (45 of 60)5/20/2005 6:22:24 PM

8086 instructions

RET

clz|slolrla

PUSHA

No operands

Push all general purpose registers AX, CX,
DX, BX, SP, BP, SI, DI in the stack.
Original value of SP register (before
PUSHA) is used.

Note: this instruction works only on 80186
CPU and later!

Algorithm:

. PUSHAX
. PUSHCX
. PUSH DX
. PUSH BX
. PUSHSP
. PUSHBP
. PUSH S
PUSH DI

clzsiolpia

unchanged

PUSHF

No operands

Store flags register in the stack.

Algorithm:

. SP=SP-2
SS.[SP] (top of the stack) = flags

clz|s[olrla

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (46 of 60)5/20/2005 6:22:24 PM

8086 instructions

RCL

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl left through Carry Flag.
The number of rotates is set by operand2.
When immediate is greater then 1,
assembler generates several RCL xx, 1
instructions because 8086 has machine
code only for this instruction (the same
principle works for all other shift/rotate
instructions).

Algorithm:

shift all bitsleft, the bit that goes off is set to
CF and previous value of CF isinserted to the
right-most position.

Example:

STC ; set carry (CF=1).

MOV AL, 1Ch ; AL =00011100b

RCL AL, 1 ; AL = 00111001b, CF=0.
RET

e
3

OF=0if first operand keeps original sign.

RCR

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl right through Carry Flag.
The number of rotates is set by operand?2.

Algorithm:

shift all bitsright, the bit that goes off is set to
CF and previous value of CF isinserted to the
left-most position.

Example:

STC ; set carry (CF=1).

MOV AL,1Ch ; AL =00011100b
RCRAL,1 ; AL = 10001110b, CF=0.
RET

o
aa

OF=0if first operand keeps original sign.

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (47 of 60)5/20/2005 6:22:24 PM

8086 instructions

REP

chain instruction

Repeat following MOVSB, MOVSW, LODSB,
LODSW, STOSB, STOSW instructions CX
times.

Algorithm:
check_cx:

if CX <> 0then

. dofollowing chain instruction
CX=CX-1
. Qo back to check cx

. exit from REP cycle

REPE

chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = 1 (result is
Equal), maximum CX times.

Algorithm:
check cx:

if CX <>0then

. dofollowing chain instruction
. CX=CX-1
. if ZF=1then:
o go back to check_cx
else
o exit from REPE cycle

else
. exit from REPE cycle

Example:
see cmpsb.asm in Samples.

z
’I’_

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (48 of 60)5/20/2005 6:22:24 PM

http://www.emu8086.com/vb/asm_samples/cmpsb.txt

8086 instructions

REPNE

chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = O (result is
Not Equal), maximum CX times.

Algorithm:
check_cx:

if CX <> 0then

. dofollowing chain instruction
. CX=CX-1
. if ZF=0then:
o go back to check_cx
else
o exit from REPNE cycle

else

exit from REPNE cycle

REPNZ

chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = 0 (result is
Not Zero), maximum CX times.

Algorithm:
check_cx:

if CX <> 0then

. dofollowing chain instruction
. CX=CX-1
. if ZF=0then:
o go back to check_cx
else
o exit from REPNZ cycle

else

exit from REPNZ cycle

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (49 of 60)5/20/2005 6:22:24 PM

8086 instructions

REPZ

chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = 1 (result is
Zero), maximum CX times.

Algorithm:
check cx:

if CX <> 0then

. dofollowing chain instruction
. CX=CX-1
. if ZF=1then:
o go back to check_cx
else
o exit from REPZ cycle

else

. exit from REPZ cycle

RET

No operands
or even
immediate

Return from near procedure.

Algorithm:

. Pop from stack:
o IP
if immediate operand is present: SP = SP +
operand

Example:

#make COM#
ORG 100h ; for COM file.

CALL p1

ADD AX, 1

RET ; return to OS.

pl PROC ; procedure declaration.
MOV AX, 1234h

RET ;returnto cdler.
pl ENDP

clz[slolpla

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (50 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged |

RETF

No operands
or even
immediate

Return from Far procedure.

Algorithm:

Pop from stack:
o IP
o CS
. if immediate operand is present: SP = SP +
operand

clzls[olpa
[anchanged |

ROL

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl left. The number of
rotates is set by operand2.

Algorithm:

shift all bitsleft, the bit that goes off is set to
CF and the same bit is inserted to the right-
most position.

Example:

MOV AL, 1Ch ; AL =00011100b
ROL AL, 1 ; AL = 00111000b, CF=0.
RET

BB
a3

OF=0 if first operand keeps original sign.

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (51 of 60)5/20/2005 6:22:24 PM

8086 instructions

ROR

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl right. The number of
rotates is set by operand2.

Algorithm:

shift all bitsright, the bit that goes off is set to
CF and the same hit is inserted to the left-most
position.

Example:

MOV AL, 1Ch ; AL =00011100b
RORAL, 1 ; AL = 00001110b, CF=0.
RET

cp
a3

OF=0 if first operand keeps original sign.

SAHF

No operands

Store AH register into low 8 bits of Flags
register.

Algorithm:
flagsregister = AH

AHbit: 7 65 43 21 0
[SF] [ZF] [0] [AF] [O] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

clzlsiofpia
r e e Irie

memory, immediate
REG, immediate

memory, CL
REG, CL

Shift Arithmetic operandl Left. The number
of shifts is set by operand2.

Algorithm:

. Shift dl bitsleft, the bit that goes off is set to
CF.
. Zero bit isinserted to the right-most position.

Example:

MOV AL, OEOh ; AL =11100000b
SAL AL, 1 ; AL = 11000000b, CF=1.

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (52 of 60)5/20/2005 6:22:24 PM

8086 instructions

OF=0if first operand keeps original sign.

memory, immediate

Shift Arithmetic operandl Right. The
number of shifts is set by operand2.

Algorithm:

. Shift al bitsright, the bit that goes off is set to
CF.

. Thesign bit that is inserted to the left-most
position has the same value as before shift.

Example:

AR REG, immediate MOV AL, OEOh ;AL = 11100000b
memory, CL SARAL,1 ; AL =11110000b, CF=0.
REG, CL MOV BL, 4Ch ; BL =01001100b
SARBL,1 ; BL =00100110b, CF=0.
RET
cfo
rlr
OF=0 if first operand keeps original sign.
Subtract with Borrow.
Algorithm:
operandl = operandl - operand2 - CF
Example:
REG, memory
STC
seB REG.AEG | MOVALS
T ' SBBAL,3 ;AL=5-3-1=1
memory, immediate
REG, immediate

RET

clzlsiofpia
r e e e

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (53 of 60)5/20/2005 6:22:24 PM

8086 instructions

SCASB

No operands

Compare bytes: AL from ES:[DI].

Algorithm:

. ESI[DI]-AL
. set flags according to result:
OF, SF, ZF, AF, PF, CF
if DF =0then
o DI=DI+1
ese
o DI=DI-1

clzslolpla
r e e e rie

SCASW

No operands

Compare words: AX from ES:[DI].

Algorithm:

ES[DI] - AX
. set flags according to result:
OF, SF, ZF, AF, PF, CF

. if DF=0then
o DI=DI+2
else
o DI=DI-2

clzlsiofpia
r e Jr e frie

SHL

memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operandl Left. The number of shifts is
set by operand?2.

Algorithm:
Shift al bitsleft, the bit that goes off is set to

CF.
Zero hit isinserted to the right-most position.

Example:

MOV AL, 11100000b
SHL AL, 1 ; AL = 11000000b, CF=1.

RET

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (54 of 60)5/20/2005 6:22:24 PM

8086 instructions

OF=0if first operand keeps original sign.

SHR

memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operandl Right. The number of shifts
is set by operand2.

Algorithm:

Shift al bitsright, the bit that goes off is set to
CF.
Zero bit isinserted to the left-most position.

Example:

MOV AL, 00000111b
SHRAL,1 ; AL = 00000011b, CF=1.

RET

OF=0 if first operand keeps original sign.

STC

No operands

Set Carry flag.

Algorithm:

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (55 of 60)5/20/2005 6:22:24 PM

8086 instructions

STD No operands

Set Direction flag. SI and DI will be
decremented by chain instructions: CMPSB,
CMPSW, LODSB, LODSW, MOVSB, MOVSW,
STOSB, STOSW.

Algorithm:

STI No operands

Set Interrupt enable flag. This enables
hardware interrupts.

Algorithm:

STOSB No operands

Store byte in AL into ES:[DI]. Update DI.

Algorithm:

. ES[DI]=AL
if DF = 0 then
o DI=DI+1
else
o DI=DI-1

Example:

#make COM#
ORG 100h

LEA DI, al
MOV AL, 12h
MOV CX, 5
REP STOSB
RET

al DB 5 dup(0)

clzslofpia

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (56 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged

STOSW

No operands

Store word in AX into ES:[DI]. Update DI.

Algorithm:

. ES[DI] = AX
if DF = 0 then
o DI=DI+2
else
o DI=DI-2

Example:

#make COM#
ORG 100h

LEA DI, al
MOV AX, 1234h
MOV CX, 5
REP STOSW
RET

al DW 5 dup(0)

clz|s[ofp|a

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Subtract.
Algorithm:
operandl = operandl - operand?2

Example:

MOV AL, 5
SUB AL, 1 JAL=4

RET

=lal
SN
Sl o]
=10l
=1l
1>

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (57 of 60)5/20/2005 6:22:24 PM

8086 instructions

TEST

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical AND between all bits of two
operands for flags only. These flags are
effected: ZF, SF, PF. Result is not stored
anywhere.

These rules apply:

1AND1=1
1ANDO=0
0OAND1=0
0OANDO=0

Example:

MOV AL, 00000101b
TEST AL, 1 y ZF=0.
TEST AL,10b ;ZF=1
RET

clzslol
olr Ir fo]r

@]
N
wn
O
5

o
=
o

XCHG

REG, memory
memory, REG
REG, REG

Exchange values of two operands.
Algorithm:
operandl < - > operand2

Example:

MOV AL, 5

MQV AH, 2

XCHGAL,AH ;AL=2,AH=5
XCHGAL,AH ;AL=5AH=2
RET

clz|s[olrla

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (58 of 60)5/20/2005 6:22:24 PM

8086 instructions

XLATB

No operands

Translate byte from table.
Copy value of memory byte at DS:[BX +
unsigned AL] to AL register.

Algorithm:
AL =DS[BX + unsigned AL]

Example:

#make COM#
ORG 100h

LEA BX, dat

MOV AL, 2

XLATB :AL=33h

RET
dat DB 11h, 22h, 33h, 44h, 55h

clz|s|olrla

XOR

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical XOR (Exclusive OR) between all bits
of two operands. Result is stored in first
operand.

These rules apply:

1XOR1=0
1XOR0=1
O0XOR1=1
0XORO0=0

Example:

MOV AL, 00000111b
XOR AL, 00000010b ; AL =00000101b
RET

clzlsolpia
ol rjolrz

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (59 of 60)5/20/2005 6:22:24 PM

8086 instructions

Copyright © 2003-2005 Emu8086, Inc.
All rights reserved.
http://www.emu8086.com

Emu8086 Home Page | Help Index | Overview of Emu8086
Emulator | Assembly Language Tutorials:01234567891011 12

| Emu8086 reference | Download Emu8086
INSTRUCTION SET | INTERRUPT LIST

COMPLETE 8086

http://www.emu8086.com/assembly_language tutorial_assembler_reference/8086_instruction_set.html (60 of 60)5/20/2005 6:22:24 PM

http://www.emu8086.com/
http://www.emu8086.com/
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/index.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/tutorials.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/numbering_systems_tutorial.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_01.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_02.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_03.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_04.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_05.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_06.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_07.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_08.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_09.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_10.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_11.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_12.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/reference.html
http://www.emu8086.com/download.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/supported_interrupts.html
mailto:help@emu8086.com

	emu8086.com
	8086 instructions

