
8086 instructions

Emu8086 Home Page | Help Index | Overview of Emu8086
Emulator | Assembly Language Tutorials: 0 1 2 3 4 5 6 7 8 9 10 11 12

 | Emu8086 reference | Download Emu8086 | COMPLETE 8086
INSTRUCTION SET | INTERRUPT LIST | Contact

Complete 8086 instruction set

Quick reference:

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CBW
CLC
CLD
CLI
CMC
CMP

CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
HLT
IDIV
IMUL
IN
INC
INT
INTO
IRET
JA

JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB

JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE

JPO
JS
JZ
LAHF
LDS
LEA
LES
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ

MOV
MOVSB
MOVSW
MUL
NEG
NOP
NOT
OR
OUT
POP
POPA
POPF
PUSH
PUSHA
PUSHF
RCL

RCR
REP
REPE
REPNE
REPNZ
REPZ
RET
RETF
ROL
ROR
SAHF
SAL
SAR
SBB

SCASB
SCASW
SHL
SHR
STC
STD
STI
STOSB
STOSW
SUB
TEST
XCHG
XLATB
XOR

Operand types:

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX], [BX+SI+7], variable, etc...(see Memory Access).

immediate: 5, -24, 3Fh, 10001101b, etc...

Notes:

● When two operands are required for an instruction they are
separated by comma. For example:

REG, memory

● When there are two operands, both operands must have the same
size (except shift and rotate instructions). For example:

AL, DL
DX, AX

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (1 of 60)5/20/2005 6:22:23 PM

http://www.emu8086.com/
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/index.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/tutorials.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/numbering_systems_tutorial.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_01.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_02.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_03.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_04.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_05.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_06.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_07.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_08.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_09.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_10.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_11.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_12.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/reference.html
http://www.emu8086.com/download.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/supported_interrupts.html
mailto:help@emu8086.com
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_02.html

8086 instructions

m1 DB ?
AL, m1
m2 DW ?
AX, m2

● Some instructions allow several operand combinations. For example:

memory, immediate
REG, immediate

memory, REG
REG, SREG

● Some examples contain macros, so it is advisable to use Shift + F8
hot key to Step Over (to make macro code execute at maximum
speed set step delay to zero), otherwise emulator will step through
each instruction of a macro. Here is an example that uses PRINTN
macro:

 #make_COM#
 include 'emu8086.inc'
 ORG 100h
 MOV AL, 1
 MOV BL, 2
 PRINTN 'Hello World!' ; macro.
 MOV CL, 3
 PRINTN 'Welcome!' ; macro.
 RET

These marks are used to show the state of the flags:

1 - instruction sets this flag to 1.
0 - instruction sets this flag to 0.
r - flag value depends on result of the instruction.
? - flag value is undefined (maybe 1 or 0).

Some instructions generate exactly the same machine code, so disassembler may have a
problem decoding to your original code. This is especially important for Conditional
Jump instructions (see "Program Flow Control" in Tutorials for more information).

Instructions in alphabetical order:

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (2 of 60)5/20/2005 6:22:23 PM

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_07.html

8086 instructions

Instruction Operands Description

AAA No operands

ASCII Adjust after Addition.
Corrects result in AH and AL after addition
when working with BCD values.

It works according to the following
Algorithm:

if low nibble of AL > 9 or AF = 1 then:

● AL = AL + 6
● AH = AH + 1
● AF = 1
● CF = 1

else

● AF = 0
● CF = 0

in both cases:
clear the high nibble of AL.

Example:

MOV AX, 15 ; AH = 00, AL = 0Fh
AAA ; AH = 01, AL = 05
RET

C Z S O P A

r ? ? ? ? r

AAD No operands

ASCII Adjust before Division.
Prepares two BCD values for division.

Algorithm:

● AL = (AH * 10) + AL
● AH = 0

Example:

MOV AX, 0105h ; AH = 01, AL = 05
AAD ; AH = 00, AL = 0Fh (15)
RET

C Z S O P A

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (3 of 60)5/20/2005 6:22:23 PM

8086 instructions

? r r ? r ?

AAM No operands

ASCII Adjust after Multiplication.
Corrects the result of multiplication of two
BCD values.

Algorithm:

● AH = AL / 10
● AL = remainder

Example:

MOV AL, 15 ; AL = 0Fh
AAM ; AH = 01, AL = 05
RET

C Z S O P A

? r r ? r ?

AAS No operands

ASCII Adjust after Subtraction.
Corrects result in AH and AL after
subtraction when working with BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

● AL = AL - 6
● AH = AH - 1
● AF = 1
● CF = 1

else

● AF = 0
● CF = 0

in both cases:
clear the high nibble of AL.

Example:

MOV AX, 02FFh ; AH = 02, AL = 0FFh
AAS ; AH = 01, AL = 09
RET

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (4 of 60)5/20/2005 6:22:23 PM

8086 instructions

C Z S O P A

r ? ? ? ? r

ADC

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Add with Carry.

Algorithm:

operand1 = operand1 + operand2 + CF

Example:

STC ; set CF = 1
MOV AL, 5 ; AL = 5
ADC AL, 1 ; AL = 7
RET

C Z S O P A

r r r r r r

ADD

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Add.

Algorithm:

operand1 = operand1 + operand2

Example:

MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL = 2
RET

C Z S O P A

r r r r r r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (5 of 60)5/20/2005 6:22:23 PM

8086 instructions

AND

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical AND between all bits of two
operands. Result is stored in operand1.

These rules apply:

1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0

Example:

MOV AL, 'a' ; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b ('A')
RET

C Z S O P

0 r r 0 r

CALL
procedure name
label
4-byte address

Transfers control to procedure, return
address is (IP) is pushed to stack. 4-byte
address may be entered in this form:
1234h:5678h, first value is a segment second
value is an offset (this is a far call, so CS is
also pushed to stack).

Example:

#make_COM#
ORG 100h ; for COM file.

CALL p1

ADD AX, 1

RET ; return to OS.

p1 PROC ; procedure declaration.
 MOV AX, 1234h
 RET ; return to caller.
p1 ENDP

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (6 of 60)5/20/2005 6:22:23 PM

8086 instructions

CBW No operands

Convert byte into word.

Algorithm:

if high bit of AL = 1 then:

● AH = 255 (0FFh)

else

● AH = 0

Example:

MOV AX, 0 ; AH = 0, AL = 0
MOV AL, -5 ; AX = 000FBh (251)
CBW ; AX = 0FFFBh (-5)
RET

C Z S O P A

unchanged

CLC No operands

Clear Carry flag.

Algorithm:

CF = 0

C

0

CLD No operands

Clear Direction flag. SI and DI will be
incremented by chain instructions: CMPSB,
CMPSW, LODSB, LODSW, MOVSB, MOVSW,
STOSB, STOSW.

Algorithm:

DF = 0

D

0

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (7 of 60)5/20/2005 6:22:23 PM

8086 instructions

CLI No operands

Clear Interrupt enable flag. This disables
hardware interrupts.

Algorithm:

IF = 0

I

0

CMC No operands

Complement Carry flag. Inverts value of CF.

Algorithm:

if CF = 1 then CF = 0
if CF = 0 then CF = 1

C

r

CMP

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Compare.

Algorithm:

operand1 - operand2

result is not stored anywhere, flags are set (OF, SF, ZF,
AF, PF, CF) according to result.

Example:

MOV AL, 5
MOV BL, 5
CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
RET

C Z S O P A

r r r r r r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (8 of 60)5/20/2005 6:22:23 PM

8086 instructions

CMPSB No operands

Compare bytes: ES:[DI] from DS:[SI].

Algorithm:

● DS:[SI] - ES:[DI]
● set flags according to result:

OF, SF, ZF, AF, PF, CF
● if DF = 0 then

❍ SI = SI + 1
❍ DI = DI + 1

else
❍ SI = SI - 1
❍ DI = DI - 1

Example:
see cmpsb.asm in Samples.

C Z S O P A

r r r r r r

CMPSW No operands

Compare words: ES:[DI] from DS:[SI].

Algorithm:

● DS:[SI] - ES:[DI]
● set flags according to result:

OF, SF, ZF, AF, PF, CF
● if DF = 0 then

❍ SI = SI + 2
❍ DI = DI + 2

else
❍ SI = SI - 2
❍ DI = DI - 2

Example:
see cmpsw.asm in Samples.

C Z S O P A

r r r r r r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (9 of 60)5/20/2005 6:22:23 PM

http://www.emu8086.com/vb/asm_samples/cmpsb.txt
http://www.emu8086.com/vb/asm_samples/cmpsw.txt

8086 instructions

CWD No operands

Convert Word to Double word.

Algorithm:

if high bit of AX = 1 then:

● DX = 65535 (0FFFFh)

else

● DX = 0

Example:

MOV DX, 0 ; DX = 0
MOV AX, 0 ; AX = 0
MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD ; DX AX = 0FFFFh:0FFFBh
RET

C Z S O P A

unchanged

DAA No operands

Decimal adjust After Addition.
Corrects the result of addition of two
packed BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

● AL = AL + 6
● AF = 1

if AL > 9Fh or CF = 1 then:

● AL = AL + 60h
● CF = 1

Example:

MOV AL, 0Fh ; AL = 0Fh (15)
DAA ; AL = 15h
RET

C Z S O P A

r r r r r r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (10 of 60)5/20/2005 6:22:24 PM

8086 instructions

DAS No operands

Decimal adjust After Subtraction.
Corrects the result of subtraction of two
packed BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

● AL = AL - 6
● AF = 1

if AL > 9Fh or CF = 1 then:

● AL = AL - 60h
● CF = 1

Example:

MOV AL, 0FFh ; AL = 0FFh (-1)
DAS ; AL = 99h, CF = 1
RET

C Z S O P A

r r r r r r

DEC
REG
memory

Decrement.

Algorithm:

operand = operand - 1

Example:

MOV AL, 255 ; AL = 0FFh (255 or -1)
DEC AL ; AL = 0FEh (254 or -2)
RET

Z S O P A

r r r r r

CF - unchanged!

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (11 of 60)5/20/2005 6:22:24 PM

8086 instructions

DIV
REG
memory

Unsigned divide.

Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)

Example:

MOV AX, 203 ; AX = 00CBh
MOV BL, 4
DIV BL ; AL = 50 (32h), AH = 3
RET

C Z S O P A

? ? ? ? ? ?

HLT No operands

Halt the System.

Example:

MOV AX, 5
HLT

C Z S O P A

unchanged

IDIV
REG
memory

Signed divide.

Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)

Example:

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (12 of 60)5/20/2005 6:22:24 PM

8086 instructions

MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh)
RET

C Z S O P A

? ? ? ? ? ?

IMUL
REG
memory

Signed multiply.

Algorithm:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

Example:

MOV AL, -2
MOV BL, -4
IMUL BL ; AX = 8
RET

C Z S O P A

r ? ? r ? ?

CF=OF=0 when result fits into operand of IMUL.

IN

AL, im.byte
AL, DX
AX, im.byte
AX, DX

Input from port into AL or AX.
Second operand is a port number. If
required to access port number over 255 -
DX register should be used.
Example:

IN AX, 4 ; get status of traffic lights.
IN AL, 7 ; get status of stepper-motor.

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (13 of 60)5/20/2005 6:22:24 PM

8086 instructions

INC
REG
memory

Increment.

Algorithm:

operand = operand + 1

Example:

MOV AL, 4
INC AL ; AL = 5
RET

Z S O P A

r r r r r

CF - unchanged!

INT immediate byte

Interrupt numbered by immediate byte
(0..255).

Algorithm:

Push to stack:
❍ flags register
❍ CS
❍ IP

● IF = 0
● Transfer control to interrupt procedure

Example:

MOV AH, 0Eh ; teletype.
MOV AL, 'A'
INT 10h ; BIOS interrupt.
RET

C Z S O P A I

unchanged 0

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (14 of 60)5/20/2005 6:22:24 PM

8086 instructions

INTO No operands

Interrupt 4 if Overflow flag is 1.

Algorithm:

if OF = 1 then INT 4

Example:

; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
INTO ; process error.
RET

IRET No operands

Interrupt Return.

Algorithm:

Pop from stack:
❍ IP
❍ CS
❍ flags register

C Z S O P A

popped

JA label

Short Jump if first operand is Above second
operand (as set by CMP instruction).
Unsigned.

Algorithm:

if (CF = 0) and (ZF = 0) then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 250
 CMP AL, 5
 JA label1
 PRINT 'AL is not above 5'
 JMP exit
label1:
 PRINT 'AL is above 5'

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (15 of 60)5/20/2005 6:22:24 PM

8086 instructions

exit:
 RET

C Z S O P A

unchanged

JAE label

Short Jump if first operand is Above or
Equal to second operand (as set by CMP
instruction). Unsigned.

Algorithm:

if CF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, 5
 JAE label1
 PRINT 'AL is not above or equal to 5'
 JMP exit
label1:
 PRINT 'AL is above or equal to 5'
exit:
 RET

C Z S O P A

unchanged

JB label

Short Jump if first operand is Below second
operand (as set by CMP instruction).
Unsigned.

Algorithm:

if CF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 1
 CMP AL, 5
 JB label1

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (16 of 60)5/20/2005 6:22:24 PM

8086 instructions

 PRINT 'AL is not below 5'
 JMP exit
label1:
 PRINT 'AL is below 5'
exit:
 RET

C Z S O P A

unchanged

JBE label

Short Jump if first operand is Below or
Equal to second operand (as set by CMP
instruction). Unsigned.

Algorithm:

if CF = 1 or ZF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, 5
 JBE label1
 PRINT 'AL is not below or equal to 5'
 JMP exit
label1:
 PRINT 'AL is below or equal to 5'
exit:
 RET

C Z S O P A

unchanged

Short Jump if Carry flag is set to 1.

Algorithm:

if CF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 255
 ADD AL, 1

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (17 of 60)5/20/2005 6:22:24 PM

8086 instructions

JC label JC label1
 PRINT 'no carry.'
 JMP exit
label1:
 PRINT 'has carry.'
exit:
 RET

C Z S O P A

unchanged

JCXZ label

Short Jump if CX register is 0.

Algorithm:

if CX = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV CX, 0
 JCXZ label1
 PRINT 'CX is not zero.'
 JMP exit
label1:
 PRINT 'CX is zero.'
exit:
 RET

C Z S O P A

unchanged

Short Jump if first operand is Equal to
second operand (as set by CMP instruction).
Signed/Unsigned.

Algorithm:

if ZF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (18 of 60)5/20/2005 6:22:24 PM

8086 instructions

JE label CMP AL, 5
 JE label1
 PRINT 'AL is not equal to 5.'
 JMP exit
label1:
 PRINT 'AL is equal to 5.'
exit:
 RET

C Z S O P A

unchanged

JG label

Short Jump if first operand is Greater then
second operand (as set by CMP instruction).
Signed.

Algorithm:

if (ZF = 0) and (SF = OF) then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, -5
 JG label1
 PRINT 'AL is not greater -5.'
 JMP exit
label1:
 PRINT 'AL is greater -5.'
exit:
 RET

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (19 of 60)5/20/2005 6:22:24 PM

8086 instructions

JGE label

Short Jump if first operand is Greater or
Equal to second operand (as set by CMP
instruction). Signed.

Algorithm:

if SF = OF then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, -5
 JGE label1
 PRINT 'AL < -5'
 JMP exit
label1:
 PRINT 'AL >= -5'
exit:
 RET

C Z S O P A

unchanged

JL label

Short Jump if first operand is Less then
second operand (as set by CMP instruction).
Signed.

Algorithm:

if SF <> OF then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, -2
 CMP AL, 5
 JL label1
 PRINT 'AL >= 5.'
 JMP exit
label1:
 PRINT 'AL < 5.'
exit:
 RET

C Z S O P A

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (20 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged

JLE label

Short Jump if first operand is Less or Equal
to second operand (as set by CMP
instruction). Signed.

Algorithm:

if SF <> OF or ZF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, -2
 CMP AL, 5
 JLE label1
 PRINT 'AL > 5.'
 JMP exit
label1:
 PRINT 'AL <= 5.'
exit:
 RET

C Z S O P A

unchanged

JMP
label
4-byte address

Unconditional Jump. Transfers control to
another part of the program. 4-byte
address may be entered in this form:
1234h:5678h, first value is a segment second
value is an offset.

Algorithm:

always jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 JMP label1 ; jump over 2 lines!
 PRINT 'Not Jumped!'
 MOV AL, 0
label1:

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (21 of 60)5/20/2005 6:22:24 PM

8086 instructions

 PRINT 'Got Here!'
 RET

C Z S O P A

unchanged

JNA label

Short Jump if first operand is Not Above
second operand (as set by CMP instruction).
Unsigned.

Algorithm:

if CF = 1 or ZF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 5
 JNA label1
 PRINT 'AL is above 5.'
 JMP exit
label1:
 PRINT 'AL is not above 5.'
exit:
 RET

C Z S O P A

unchanged

JNAE label

Short Jump if first operand is Not Above
and Not Equal to second operand (as set by
CMP instruction). Unsigned.

Algorithm:

if CF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 5
 JNAE label1
 PRINT 'AL >= 5.'

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (22 of 60)5/20/2005 6:22:24 PM

8086 instructions

 JMP exit
label1:
 PRINT 'AL < 5.'
exit:
 RET

C Z S O P A

unchanged

JNB label

Short Jump if first operand is Not Below
second operand (as set by CMP instruction).
Unsigned.

Algorithm:

if CF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 7
 CMP AL, 5
 JNB label1
 PRINT 'AL < 5.'
 JMP exit
label1:
 PRINT 'AL >= 5.'
exit:
 RET

C Z S O P A

unchanged

Short Jump if first operand is Not Below
and Not Equal to second operand (as set by
CMP instruction). Unsigned.

Algorithm:

if (CF = 0) and (ZF = 0) then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (23 of 60)5/20/2005 6:22:24 PM

8086 instructions

JNBE label MOV AL, 7
 CMP AL, 5
 JNBE label1
 PRINT 'AL <= 5.'
 JMP exit
label1:
 PRINT 'AL > 5.'
exit:
 RET

C Z S O P A

unchanged

JNC label

Short Jump if Carry flag is set to 0.

Algorithm:

if CF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 ADD AL, 3
 JNC label1
 PRINT 'has carry.'
 JMP exit
label1:
 PRINT 'no carry.'
exit:
 RET

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (24 of 60)5/20/2005 6:22:24 PM

8086 instructions

JNE label

Short Jump if first operand is Not Equal to
second operand (as set by CMP instruction).
Signed/Unsigned.

Algorithm:

if ZF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 3
 JNE label1
 PRINT 'AL = 3.'
 JMP exit
label1:
 PRINT 'Al <> 3.'
exit:
 RET

C Z S O P A

unchanged

JNG label

Short Jump if first operand is Not Greater
then second operand (as set by CMP
instruction). Signed.

Algorithm:

if (ZF = 1) and (SF <> OF) then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 3
 JNG label1
 PRINT 'AL > 3.'
 JMP exit
label1:
 PRINT 'Al <= 3.'
exit:
 RET

C Z S O P A

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (25 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged

JNGE label

Short Jump if first operand is Not Greater
and Not Equal to second operand (as set by
CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 3
 JNGE label1
 PRINT 'AL >= 3.'
 JMP exit
label1:
 PRINT 'Al < 3.'
exit:
 RET

C Z S O P A

unchanged

JNL label

Short Jump if first operand is Not Less then
second operand (as set by CMP instruction).
Signed.

Algorithm:

if SF = OF then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, -3
 JNL label1
 PRINT 'AL < -3.'
 JMP exit
label1:
 PRINT 'Al >= -3.'
exit:

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (26 of 60)5/20/2005 6:22:24 PM

8086 instructions

 RET

C Z S O P A

unchanged

JNLE label

Short Jump if first operand is Not Less and
Not Equal to second operand (as set by
CMP instruction). Signed.

Algorithm:

if (SF = OF) and (ZF = 0) then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, -3
 JNLE label1
 PRINT 'AL <= -3.'
 JMP exit
label1:
 PRINT 'Al > -3.'
exit:
 RET

C Z S O P A

unchanged

JNO label

Short Jump if Not Overflow.

Algorithm:

if OF = 0 then jump

Example:

; -5 - 2 = -7 (inside -128..127)
; the result of SUB is correct,
; so OF = 0:

include 'emu8086.inc'
#make_COM#
ORG 100h
 MOV AL, -5
 SUB AL, 2 ; AL = 0F9h (-7)
JNO label1

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (27 of 60)5/20/2005 6:22:24 PM

8086 instructions

 PRINT 'overflow!'
JMP exit
label1:
 PRINT 'no overflow.'
exit:
 RET

C Z S O P A

unchanged

JNP label

Short Jump if No Parity (odd). Only 8 low
bits of result are checked. Set by CMP,
SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:

if PF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.
 JNP label1
 PRINT 'parity even.'
 JMP exit
label1:
 PRINT 'parity odd.'
exit:
 RET

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (28 of 60)5/20/2005 6:22:24 PM

8086 instructions

JNS label

Short Jump if Not Signed (if positive). Set
by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:

if SF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.
 JNS label1
 PRINT 'signed.'
 JMP exit
label1:
 PRINT 'not signed.'
exit:
 RET

C Z S O P A

unchanged

JNZ label

Short Jump if Not Zero (not equal). Set by
CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:

if ZF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.
 JNZ label1
 PRINT 'zero.'
 JMP exit
label1:
 PRINT 'not zero.'
exit:
 RET

C Z S O P A

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (29 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged

JO label

Short Jump if Overflow.

Algorithm:

if OF = 1 then jump

Example:

; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:

include 'emu8086.inc'
#make_COM#
org 100h
 MOV AL, -5
 SUB AL, 127 ; AL = 7Ch (124)
JO label1
 PRINT 'no overflow.'
JMP exit
label1:
 PRINT 'overflow!'
exit:
 RET

C Z S O P A

unchanged

JP label

Short Jump if Parity (even). Only 8 low bits
of result are checked. Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000101b ; AL = 5
 OR AL, 0 ; just set flags.
 JP label1
 PRINT 'parity odd.'
 JMP exit
label1:

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (30 of 60)5/20/2005 6:22:24 PM

8086 instructions

 PRINT 'parity even.'
exit:
 RET

C Z S O P A

unchanged

JPE label

Short Jump if Parity Even. Only 8 low bits
of result are checked. Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000101b ; AL = 5
 OR AL, 0 ; just set flags.
 JPE label1
 PRINT 'parity odd.'
 JMP exit
label1:
 PRINT 'parity even.'
exit:
 RET

C Z S O P A

unchanged

JPO label

Short Jump if Parity Odd. Only 8 low bits of
result are checked. Set by CMP, SUB, ADD,
TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 0 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.
 JPO label1

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (31 of 60)5/20/2005 6:22:24 PM

8086 instructions

 PRINT 'parity even.'
 JMP exit
label1:
 PRINT 'parity odd.'
exit:
 RET

C Z S O P A

unchanged

JS label

Short Jump if Signed (if negative). Set by
CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:

if SF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 10000000b ; AL = -128
 OR AL, 0 ; just set flags.
 JS label1
 PRINT 'not signed.'
 JMP exit
label1:
 PRINT 'signed.'
exit:
 RET

C Z S O P A

unchanged

Short Jump if Zero (equal). Set by CMP,
SUB, ADD, TEST, AND, OR, XOR
instructions.

Algorithm:

if ZF = 1 then jump

Example:

 include 'emu8086.inc'
 #make_COM#

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (32 of 60)5/20/2005 6:22:24 PM

8086 instructions

JZ label

 ORG 100h
 MOV AL, 5
 CMP AL, 5
 JZ label1
 PRINT 'AL is not equal to 5.'
 JMP exit
label1:
 PRINT 'AL is equal to 5.'
exit:
 RET

C Z S O P A

unchanged

LAHF No operands

Load AH from 8 low bits of Flags register.

Algorithm:

AH = flags register

AH bit: 7 6 5 4 3 2 1 0
 [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

C Z S O P A

unchanged

LDS REG, memory

Load memory double word into word
register and DS.

Algorithm:

● REG = first word
● DS = second word

Example:

#make_COM#
ORG 100h

LDS AX, m

RET

m DW 1234h
 DW 5678h

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (33 of 60)5/20/2005 6:22:24 PM

8086 instructions

END

AX is set to 1234h, DS is set to 5678h.

C Z S O P A

unchanged

LEA REG, memory

Load Effective Address.

Algorithm:

● REG = address of memory (offset)

Generally this instruction is replaced by
MOV when assembling when possible.

Example:

#make_COM#
ORG 100h

LEA AX, m

RET

m DW 1234h

END

AX is set to: 0104h.
LEA instruction takes 3 bytes, RET takes 1
byte, we start at 100h, so the address of
'm' is 104h.

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (34 of 60)5/20/2005 6:22:24 PM

8086 instructions

LES REG, memory

Load memory double word into word
register and ES.

Algorithm:

● REG = first word
● ES = second word

Example:

#make_COM#
ORG 100h

LES AX, m

RET

m DW 1234h
 DW 5678h

END

AX is set to 1234h, ES is set to 5678h.

C Z S O P A

unchanged

LODSB No operands

Load byte at DS:[SI] into AL. Update SI.

Algorithm:

● AL = DS:[SI]
● if DF = 0 then

❍ SI = SI + 1
else

❍ SI = SI - 1

Example:

#make_COM#
ORG 100h

LEA SI, a1
MOV CX, 5
MOV AH, 0Eh

m: LODSB
INT 10h
LOOP m

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (35 of 60)5/20/2005 6:22:24 PM

8086 instructions

RET

a1 DB 'H', 'e', 'l', 'l', 'o'

C Z S O P A

unchanged

LODSW No operands

Load word at DS:[SI] into AX. Update SI.

Algorithm:

● AX = DS:[SI]
● if DF = 0 then

❍ SI = SI + 2
else

❍ SI = SI - 2

Example:

#make_COM#
ORG 100h

LEA SI, a1
MOV CX, 5

REP LODSW ; finally there will be 555h in AX.

RET

a1 dw 111h, 222h, 333h, 444h, 555h

C Z S O P A

unchanged

LOOP label

Decrease CX, jump to label if CX not zero.

Algorithm:

● CX = CX - 1
● if CX <> 0 then

❍ jump
else

❍ no jump, continue

Example:

 include 'emu8086.inc'

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (36 of 60)5/20/2005 6:22:24 PM

8086 instructions

 #make_COM#
 ORG 100h
 MOV CX, 5
label1:
 PRINTN 'loop!'
 LOOP label1
 RET

C Z S O P A

unchanged

LOOPE label

Decrease CX, jump to label if CX not zero
and Equal (ZF = 1).

Algorithm:

● CX = CX - 1
● if (CX <> 0) and (ZF = 1) then

❍ jump
else

❍ no jump, continue

Example:

; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AX, 0
 MOV CX, 5
label1:
 PUTC '*'
 ADD AX, 100
 CMP AH, 0
 LOOPE label1
 RET

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (37 of 60)5/20/2005 6:22:24 PM

8086 instructions

LOOPNE label

Decrease CX, jump to label if CX not zero
and Not Equal (ZF = 0).

Algorithm:

● CX = CX - 1
● if (CX <> 0) and (ZF = 0) then

❍ jump
else

❍ no jump, continue

Example:

; Loop until '7' is found,
; or 5 times.

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV SI, 0
 MOV CX, 5
label1:
 PUTC '*'
 MOV AL, v1[SI]
 INC SI ; next byte (SI=SI+1).
 CMP AL, 7
 LOOPNE label1
 RET
 v1 db 9, 8, 7, 6, 5

C Z S O P A

unchanged

LOOPNZ label

Decrease CX, jump to label if CX not zero
and ZF = 0.

Algorithm:

● CX = CX - 1
● if (CX <> 0) and (ZF = 0) then

❍ jump
else

❍ no jump, continue

Example:

; Loop until '7' is found,
; or 5 times.

 include 'emu8086.inc'
 #make_COM#

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (38 of 60)5/20/2005 6:22:24 PM

8086 instructions

 ORG 100h
 MOV SI, 0
 MOV CX, 5
label1:
 PUTC '*'
 MOV AL, v1[SI]
 INC SI ; next byte (SI=SI+1).
 CMP AL, 7
 LOOPNZ label1
 RET
 v1 db 9, 8, 7, 6, 5

C Z S O P A

unchanged

LOOPZ label

Decrease CX, jump to label if CX not zero
and ZF = 1.

Algorithm:

● CX = CX - 1
● if (CX <> 0) and (ZF = 1) then

❍ jump
else

❍ no jump, continue

Example:

; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AX, 0
 MOV CX, 5
label1:
 PUTC '*'
 ADD AX, 100
 CMP AH, 0
 LOOPZ label1
 RET

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (39 of 60)5/20/2005 6:22:24 PM

8086 instructions

MOV

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

SREG, memory
memory, SREG
REG, SREG
SREG, REG

Copy operand2 to operand1.

The MOV instruction cannot:

● set the value of the CS and IP
registers.

● copy value of one segment register
to another segment register (should
copy to general register first).

● copy immediate value to segment
register (should copy to general
register first).

Algorithm:

operand1 = operand2

Example:

#make_COM#
ORG 100h
MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX ; copy value of AX to DS.
MOV CL, 'A' ; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh ; BX = position on screen.
MOV [BX], CX ; w.[0B800h:015Eh] = CX.
RET ; returns to operating system.

C Z S O P A

unchanged

MOVSB No operands

Copy byte at DS:[SI] to ES:[DI]. Update SI
and DI.

Algorithm:

● ES:[DI] = DS:[SI]
● if DF = 0 then

❍ SI = SI + 1
❍ DI = DI + 1

else
❍ SI = SI - 1
❍ DI = DI - 1

Example:

#make_COM#
ORG 100h

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (40 of 60)5/20/2005 6:22:24 PM

8086 instructions

LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSB

RET

a1 DB 1,2,3,4,5
a2 DB 5 DUP(0)

C Z S O P A

unchanged

MOVSW No operands

Copy word at DS:[SI] to ES:[DI]. Update
SI and DI.

Algorithm:

● ES:[DI] = DS:[SI]
● if DF = 0 then

❍ SI = SI + 2
❍ DI = DI + 2

else
❍ SI = SI - 2
❍ DI = DI - 2

Example:

#make_COM#
ORG 100h

LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSW

RET

a1 DW 1,2,3,4,5
a2 DW 5 DUP(0)

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (41 of 60)5/20/2005 6:22:24 PM

8086 instructions

MUL
REG
memory

Unsigned multiply.

Algorithm:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

Example:

MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL ; AX = 0320h (800)
RET

C Z S O P A

r ? ? r ? ?

CF=OF=0 when high section of the result is zero.

NEG
REG
memory

Negate. Makes operand negative (two's
complement).

Algorithm:

● Invert all bits of the operand
● Add 1 to inverted operand

Example:

MOV AL, 5 ; AL = 05h
NEG AL ; AL = 0FBh (-5)
NEG AL ; AL = 05h (5)
RET

C Z S O P A

r r r r r r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (42 of 60)5/20/2005 6:22:24 PM

8086 instructions

NOP No operands

No Operation.

Algorithm:

● Do nothing

Example:

; do nothing, 3 times:
NOP
NOP
NOP
RET

C Z S O P A

unchanged

NOT
REG
memory

Invert each bit of the operand.

Algorithm:

● if bit is 1 turn it to 0.
● if bit is 0 turn it to 1.

Example:

MOV AL, 00011011b
NOT AL ; AL = 11100100b
RET

C Z S O P A

unchanged

OR

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical OR between all bits of two
operands. Result is stored in first operand.

These rules apply:

1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0

Example:

MOV AL, 'A' ; AL = 01000001b

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (43 of 60)5/20/2005 6:22:24 PM

8086 instructions

OR AL, 00100000b ; AL = 01100001b ('a')
RET

C Z S O P A

0 r r 0 r ?

OUT

im.byte, AL
im.byte, AX
DX, AL
DX, AX

Output from AL or AX to port.
First operand is a port number. If required
to access port number over 255 - DX
register should be used.

Example:

MOV AX, 0FFFh ; Turn on all
OUT 4, AX ; traffic lights.

MOV AL, 100b ; Turn on the third
OUT 7, AL ; magnet of the stepper-motor.

C Z S O P A

unchanged

POP
REG
SREG
memory

Get 16 bit value from the stack.

Algorithm:

● operand = SS:[SP] (top of the stack)
● SP = SP + 2

Example:

MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (44 of 60)5/20/2005 6:22:24 PM

8086 instructions

POPA No operands

Pop all general purpose registers DI, SI, BP,
SP, BX, DX, CX, AX from the stack.
SP value is ignored, it is Popped but not set
to SP register).

Note: this instruction works only on 80186
CPU and later!

Algorithm:

● POP DI
● POP SI
● POP BP
● POP xx (SP value ignored)
● POP BX
● POP DX
● POP CX
● POP AX

C Z S O P A

unchanged

POPF No operands

Get flags register from the stack.

Algorithm:

● flags = SS:[SP] (top of the stack)
● SP = SP + 2

C Z S O P A

popped

PUSH

REG
SREG
memory
immediate

Store 16 bit value in the stack.

Note: PUSH immediate works only on
80186 CPU and later!

Algorithm:

● SP = SP - 2
● SS:[SP] (top of the stack) = operand

Example:

MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (45 of 60)5/20/2005 6:22:24 PM

8086 instructions

RET

C Z S O P A

unchanged

PUSHA No operands

Push all general purpose registers AX, CX,
DX, BX, SP, BP, SI, DI in the stack.
Original value of SP register (before
PUSHA) is used.

Note: this instruction works only on 80186
CPU and later!

Algorithm:

● PUSH AX
● PUSH CX
● PUSH DX
● PUSH BX
● PUSH SP
● PUSH BP
● PUSH SI
● PUSH DI

C Z S O P A

unchanged

PUSHF No operands

Store flags register in the stack.

Algorithm:

● SP = SP - 2
● SS:[SP] (top of the stack) = flags

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (46 of 60)5/20/2005 6:22:24 PM

8086 instructions

RCL

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 left through Carry Flag.
The number of rotates is set by operand2.
When immediate is greater then 1,
assembler generates several RCL xx, 1
instructions because 8086 has machine
code only for this instruction (the same
principle works for all other shift/rotate
instructions).

Algorithm:

shift all bits left, the bit that goes off is set to
CF and previous value of CF is inserted to the
right-most position.

Example:

STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCL AL, 1 ; AL = 00111001b, CF=0.
RET

C O

r r

OF=0 if first operand keeps original sign.

RCR

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 right through Carry Flag.
The number of rotates is set by operand2.

Algorithm:

shift all bits right, the bit that goes off is set to
CF and previous value of CF is inserted to the
left-most position.

Example:

STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCR AL, 1 ; AL = 10001110b, CF=0.
RET

C O

r r

OF=0 if first operand keeps original sign.

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (47 of 60)5/20/2005 6:22:24 PM

8086 instructions

REP chain instruction

Repeat following MOVSB, MOVSW, LODSB,
LODSW, STOSB, STOSW instructions CX
times.

Algorithm:

check_cx:

if CX <> 0 then

● do following chain instruction
● CX = CX - 1
● go back to check_cx

else

● exit from REP cycle

Z

r

REPE chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = 1 (result is
Equal), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

● do following chain instruction
● CX = CX - 1
● if ZF = 1 then:

❍ go back to check_cx
else

❍ exit from REPE cycle

else

● exit from REPE cycle

Example:
see cmpsb.asm in Samples.

Z

r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (48 of 60)5/20/2005 6:22:24 PM

http://www.emu8086.com/vb/asm_samples/cmpsb.txt

8086 instructions

REPNE chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = 0 (result is
Not Equal), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

● do following chain instruction
● CX = CX - 1
● if ZF = 0 then:

❍ go back to check_cx
else

❍ exit from REPNE cycle

else

● exit from REPNE cycle

Z

r

REPNZ chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = 0 (result is
Not Zero), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

● do following chain instruction
● CX = CX - 1
● if ZF = 0 then:

❍ go back to check_cx
else

❍ exit from REPNZ cycle

else

● exit from REPNZ cycle

Z

r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (49 of 60)5/20/2005 6:22:24 PM

8086 instructions

REPZ chain instruction

Repeat following CMPSB, CMPSW, SCASB,
SCASW instructions while ZF = 1 (result is
Zero), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

● do following chain instruction
● CX = CX - 1
● if ZF = 1 then:

❍ go back to check_cx
else

❍ exit from REPZ cycle

else

● exit from REPZ cycle

Z

r

RET
No operands
or even
immediate

Return from near procedure.

Algorithm:

● Pop from stack:
❍ IP

● if immediate operand is present: SP = SP +
operand

Example:

#make_COM#
ORG 100h ; for COM file.

CALL p1

ADD AX, 1

RET ; return to OS.

p1 PROC ; procedure declaration.
 MOV AX, 1234h
 RET ; return to caller.
p1 ENDP

C Z S O P A

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (50 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged

RETF
No operands
or even
immediate

Return from Far procedure.

Algorithm:

● Pop from stack:
❍ IP
❍ CS

● if immediate operand is present: SP = SP +
operand

C Z S O P A

unchanged

ROL

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 left. The number of
rotates is set by operand2.

Algorithm:

shift all bits left, the bit that goes off is set to
CF and the same bit is inserted to the right-
most position.

Example:

MOV AL, 1Ch ; AL = 00011100b
ROL AL, 1 ; AL = 00111000b, CF=0.
RET

C O

r r

OF=0 if first operand keeps original sign.

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (51 of 60)5/20/2005 6:22:24 PM

8086 instructions

ROR

memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 right. The number of
rotates is set by operand2.

Algorithm:

shift all bits right, the bit that goes off is set to
CF and the same bit is inserted to the left-most
position.

Example:

MOV AL, 1Ch ; AL = 00011100b
ROR AL, 1 ; AL = 00001110b, CF=0.
RET

C O

r r

OF=0 if first operand keeps original sign.

SAHF No operands

Store AH register into low 8 bits of Flags
register.

Algorithm:

flags register = AH

AH bit: 7 6 5 4 3 2 1 0
 [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

C Z S O P A

r r r r r r

SAL

memory, immediate
REG, immediate

memory, CL
REG, CL

Shift Arithmetic operand1 Left. The number
of shifts is set by operand2.

Algorithm:

● Shift all bits left, the bit that goes off is set to
CF.

● Zero bit is inserted to the right-most position.

Example:

MOV AL, 0E0h ; AL = 11100000b
SAL AL, 1 ; AL = 11000000b, CF=1.

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (52 of 60)5/20/2005 6:22:24 PM

8086 instructions

RET

C O

r r

OF=0 if first operand keeps original sign.

SAR

memory, immediate
REG, immediate

memory, CL
REG, CL

Shift Arithmetic operand1 Right. The
number of shifts is set by operand2.

Algorithm:

● Shift all bits right, the bit that goes off is set to
CF.

● The sign bit that is inserted to the left-most
position has the same value as before shift.

Example:

MOV AL, 0E0h ; AL = 11100000b
SAR AL, 1 ; AL = 11110000b, CF=0.

MOV BL, 4Ch ; BL = 01001100b
SAR BL, 1 ; BL = 00100110b, CF=0.

RET

C O

r r

OF=0 if first operand keeps original sign.

SBB

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Subtract with Borrow.

Algorithm:

operand1 = operand1 - operand2 - CF

Example:

STC
MOV AL, 5
SBB AL, 3 ; AL = 5 - 3 - 1 = 1

RET

C Z S O P A

r r r r r r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (53 of 60)5/20/2005 6:22:24 PM

8086 instructions

SCASB No operands

Compare bytes: AL from ES:[DI].

Algorithm:

● ES:[DI] - AL
● set flags according to result:

OF, SF, ZF, AF, PF, CF
● if DF = 0 then

❍ DI = DI + 1
else

❍ DI = DI - 1

C Z S O P A

r r r r r r

SCASW No operands

Compare words: AX from ES:[DI].

Algorithm:

● ES:[DI] - AX
● set flags according to result:

OF, SF, ZF, AF, PF, CF
● if DF = 0 then

❍ DI = DI + 2
else

❍ DI = DI - 2

C Z S O P A

r r r r r r

SHL

memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operand1 Left. The number of shifts is
set by operand2.

Algorithm:

● Shift all bits left, the bit that goes off is set to
CF.

● Zero bit is inserted to the right-most position.

Example:

MOV AL, 11100000b
SHL AL, 1 ; AL = 11000000b, CF=1.

RET

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (54 of 60)5/20/2005 6:22:24 PM

8086 instructions

C O

r r

OF=0 if first operand keeps original sign.

SHR

memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operand1 Right. The number of shifts
is set by operand2.

Algorithm:

● Shift all bits right, the bit that goes off is set to
CF.

● Zero bit is inserted to the left-most position.

Example:

MOV AL, 00000111b
SHR AL, 1 ; AL = 00000011b, CF=1.

RET

C O

r r

OF=0 if first operand keeps original sign.

STC No operands

Set Carry flag.

Algorithm:

CF = 1

C

1

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (55 of 60)5/20/2005 6:22:24 PM

8086 instructions

STD No operands

Set Direction flag. SI and DI will be
decremented by chain instructions: CMPSB,
CMPSW, LODSB, LODSW, MOVSB, MOVSW,
STOSB, STOSW.

Algorithm:

DF = 1

D

1

STI No operands

Set Interrupt enable flag. This enables
hardware interrupts.

Algorithm:

IF = 1

I

1

STOSB No operands

Store byte in AL into ES:[DI]. Update DI.

Algorithm:

● ES:[DI] = AL
● if DF = 0 then

❍ DI = DI + 1
else

❍ DI = DI - 1

Example:

#make_COM#
ORG 100h

LEA DI, a1
MOV AL, 12h
MOV CX, 5

REP STOSB

RET

a1 DB 5 dup(0)

C Z S O P A

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (56 of 60)5/20/2005 6:22:24 PM

8086 instructions

unchanged

STOSW No operands

Store word in AX into ES:[DI]. Update DI.

Algorithm:

● ES:[DI] = AX
● if DF = 0 then

❍ DI = DI + 2
else

❍ DI = DI - 2

Example:

#make_COM#
ORG 100h

LEA DI, a1
MOV AX, 1234h
MOV CX, 5

REP STOSW

RET

a1 DW 5 dup(0)

C Z S O P A

unchanged

SUB

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Subtract.

Algorithm:

operand1 = operand1 - operand2

Example:

MOV AL, 5
SUB AL, 1 ; AL = 4

RET

C Z S O P A

r r r r r r

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (57 of 60)5/20/2005 6:22:24 PM

8086 instructions

TEST

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical AND between all bits of two
operands for flags only. These flags are
effected: ZF, SF, PF. Result is not stored
anywhere.

These rules apply:

1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0

Example:

MOV AL, 00000101b
TEST AL, 1 ; ZF = 0.
TEST AL, 10b ; ZF = 1.
RET

C Z S O P

0 r r 0 r

XCHG
REG, memory
memory, REG
REG, REG

Exchange values of two operands.

Algorithm:

operand1 < - > operand2

Example:

MOV AL, 5
MOV AH, 2
XCHG AL, AH ; AL = 2, AH = 5
XCHG AL, AH ; AL = 5, AH = 2
RET

C Z S O P A

unchanged

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (58 of 60)5/20/2005 6:22:24 PM

8086 instructions

XLATB No operands

Translate byte from table.
Copy value of memory byte at DS:[BX +
unsigned AL] to AL register.

Algorithm:

AL = DS:[BX + unsigned AL]

Example:

#make_COM#
ORG 100h
LEA BX, dat
MOV AL, 2
XLATB ; AL = 33h

RET

dat DB 11h, 22h, 33h, 44h, 55h

C Z S O P A

unchanged

XOR

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical XOR (Exclusive OR) between all bits
of two operands. Result is stored in first
operand.

These rules apply:

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0

Example:

MOV AL, 00000111b
XOR AL, 00000010b ; AL = 00000101b
RET

C Z S O P A

0 r r 0 r ?

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (59 of 60)5/20/2005 6:22:24 PM

8086 instructions

Copyright © 2003-2005 Emu8086, Inc.
All rights reserved.

http://www.emu8086.com

Emu8086 Home Page | Help Index | Overview of Emu8086
Emulator | Assembly Language Tutorials: 0 1 2 3 4 5 6 7 8 9 10 11 12

 | Emu8086 reference | Download Emu8086 | COMPLETE 8086
INSTRUCTION SET | INTERRUPT LIST | Contact

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_instruction_set.html (60 of 60)5/20/2005 6:22:24 PM

http://www.emu8086.com/
http://www.emu8086.com/
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/index.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/start.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/tutorials.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/numbering_systems_tutorial.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_01.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_02.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_03.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_04.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_05.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_06.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_07.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_08.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_09.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_10.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_11.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/asm_tutorial_12.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/reference.html
http://www.emu8086.com/download.html
http://www.emu8086.com/assembly_language_tutorial_assembler_reference/supported_interrupts.html
mailto:help@emu8086.com

	emu8086.com
	8086 instructions

